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Abstract— In this paper, we introduce Bidirectional Non-
Overlapping Filtering Network (Bi-NOFNet), which registers
the partial intraoperative point set with full preoperative
point set for computer-assisted interventions (CAI). Our con-
tributions are three-folds. First, Bi-NOFNet adopts customised
feature extractor to extract distinctive features from both point
sets, with which the per-point overlap mask is predicted and
the overlapping region is segmented for the preoperative point
set. Furthermore, we propose two methods to filter out the non-
overlapping regions, at feature-level (i.e., Bi-NOFNet(Feature))
and point-level (i.e., Bi-NOFNet (Point)). For these two methods,
we develop supervised registration strategy where the ground-
truth overlap mask and displacement vectors are employed,
and weakly-supervised registration strategies where only the
ground-truth overlap mask is available. Additionally, to fully
utilise the information in both space, we propose a bidirec-
tional registration mechanism, which predicts the displacement
vectors associated with the intraoperative point set (i.e., the
forward way) and those warpping the preoperative point set
(i.e., the backward way). Experiments have been conducted
on the proposed DeformMedShapeNet dataset that contains
615 different liver shapes. Extensive results demonstrate that
Bi-NOFNet performs well for partial-to-full registration tasks
under various scenarios of noise, overlap ratios and defor-
mation levels, outperforming existing non-rigid registration
approaches. Code and data will be made publicly available
after the review process.

I. INTRODUCTION

Point Set Registration (PSR) is a critical and fundamental
issue in fields of medical robotics [1], medical image analysis
[2] and image-guided surgery [3]. The goal of surgical
navigation is to assist surgeons intraoperatively by providing
visualisations of structures of interest (e.g., tumors, vessels)
and surgical plan (e.g., planned resection lines). Typically, a
detailed information-rich preoperative computed tomography
(CT) scan is conducted, which has to be accurately aligned
with intraoperative scene to enable successful navigation. In
image-guided liver surgery (IGLS), during surgery, soft tis-
sue often undergoes non-rigid deformation due to factors like
breathing and squeezing [4]. Non-rigid point set registration
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Fig. 1. The registration results using Bi-NOFNet under three different
overlap ratios (i.e., 12.5%, 25%, 50%) between the intraoperative and
preoperative point sets. The red points represent the partial intraoperative
liver and the blue mesh represents the preoperative liver, respectively.

is thus needed to warp the preoperative model to match with
the intraoperative data. However, the non-rigid registration
task still faces several challenges: (1) the intraoperative data
is usually noisy, and contains outliers. (2) intraoperative
scenes are often only partially overlapping with the full
preoperative model due to the limited camera view leading
only a partial region of the organ surface visible. (3) the
non-rigid deformation of intraoperative organs is extremely
complex to accurately model.

Recently, deep-learning-based methods have been pro-
posed to solve the non-rigid point set registration problem
[5][6][7][8][9][10]. However, most of them may not be suit-
able for the partial-to-full registration problem. To deal with
the challenge of partial overlapping, Predator [11] introduces
the concept of overlap ratio, based on which utilised points
will be more sampled in the overlapping regions. OMNet
[12] proposes an end-to-end model and utilises network
prediction to generate an overlap mask, which is incorporated
in the feature extraction phase to eliminate interference from
non-overlapping regions. However, Predator and OMNet
were designed specifically for the rigid point set registration
problem.

In this paper, we propose the Bidirectional Non-
Overlapping Filtering Registration Network (Bi-NOFNet) –
an end-to-end non-rigid registration network that can adapt to
input point sets with varying degrees of overlap. Bi-NOFNet
is designed with three core modules, i.e., Feature Extractor
Block, Overlap-Aware Block and Bidirectional Registra-
tion Block, combined through two non-overlapping filtering
strategies. First, preoperative and intraoperative point sets are
input into an feature extractor to learn features that are used
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for predicting the overlap mask. Second, using the overlap
mask, we can filter out non-overlapping regions from the pre-
operative point set at feature-level or point-level, after which
filtered features are learned through another feature extractor.
Finally, we design a bidirectional registration mechanism
which predicts both the displacement vectors associated with
the intraoperative point set to match the preoperative point set
(i.e., the forward way) and those warpping the preoperative
point set to match the intraoperative point set (i.e., the back-
ward way). Experimental results demonstrate Bi-NOFNet’s
superior performance on DeformMedShapeNet, significantly
outperforming existing non-rigid registration approaches in
handling partial-to-full registration tasks.

In summary, our contributions can be outlined as follows:
• We have constructed DeformMedShapeNet, a de-

formable liver registration dataset from the recently
introduced large-scale public medical dataset Med-
ShapeNet [13], which accounts for various levels of
noise, overlap ratio and deformation to extensively
evaluate the non-rigid registration algorithms for image-
guided liver surgery .

• We have proposed the Bidirectional Non-Overlapping-
Region Filtering Registration Network (Bi-NOFNet) for
partial-to-full non-rigid point set registration, where we
have successfully integrated the bidirectional registra-
tion mechanism in order to fully utilize the information
of both point sets.

• We have proposed an Overlap-Aware module to pre-
dict the overlap mask that estimates the overlapping
regions in the full preoperative point set compared to
the partial intraoperative data, and carefully designated
two approaches (i.e., at point-level and feature-level)
to filter out non-overlapping regions under the super-
vised (i.e., with known GT overlap mask and point-
wise displacement vectors) and weakly-supervised (i.e.,
with only known overlap mask) registration paradigms
respectively.

II. RELATED WORK

We review the relevant non-rigid point set registration
approaches, which are categorized into traditional regis-
tration methods, correspondence-based registration methods
and correspondence-free registration methods.

A. Traditional Registration Methods

The Non-rigid Iterative Closest Point (NICP) [14] is a
classic non-rigid point cloud registration algorithm. It allows
optimization through non-rigid deformation models, and
ultimately formulates the energy function of template-to-
target optimization as a sparse matrix least squares problem,
achieving higher registration accuracy and robustness. Co-
herent Point Drift (CPD) [15] casts the registration task as a
probability density estimation problem by representing one
point set as Gaussian Mixture Model (GMM), where the
coherent motion among neighboring points for registration
is promoted. Very recently, BCPD reformulates both the
rigid and non-rigid registration problems into the Bayesian

framework, where the theoretical convergence is guaranteed
[16]. The traditional registration methods mentioned above
rely on manually selecting features or designing feature
descriptors which makes extracted features susceptible to
noise, and are usually slow in the optimization speed.

B. Correspondence-based Registration Methods (learned)

The rationale of methods in this category is that the
learned features are first utilised to establish correspondences
between source and target point set, with which the non-
rigid transformation is computed with traditional non-rigid
methods (e.g. NICP [17]). FLOT [6] and RobOT [18] formu-
lates the correspondence estimation as the optimal transport
problem. Lepard [19] adds 3D positional information to
Transformer [20] and utilises dual-softmax for differentiable
matching. The correspondence-based methods have high
robustness and good generalization capability, but cannot
predict the deformation vectors in an end-to-end manner and
thus own limited running speed.

C. Correspondence-free Registration Methods (learned)

Correspondence-free registration methods directly predict
displacement vectors between two point sets by leveraging
learned features. FlowNet3D [5] introduces new learning
layers based on Pointnet++ [21], one for learning the
associative encoding of two frames of point clouds, and
the other for propagating inter-frame point cloud features,
thereby enabling it to predict displacement vectors from
sequential point clouds. Very recently, Bi-PointFlowNet [9]
and MSBRN [10] use a hierarchical architecture with bidi-
rectional flow embeddings to further learn the associative
information between the two point sets. NDP [22] utilize a
pyramid to represent non-rigid motion and achieves better
non-rigid registration results through hierarchical motion
decomposition.Specifically, for surgical scenarios, FPT [7]
utilizes PointNet [23] to learn high-dimensional features,
and then predicts a non-rigid displacement field from the
preoperative to the intraoperative point set using MLP. While
[5][9][10][7][8] are designed for non-rigid registration tasks,
they mainly focus on full-to-full registration problem, which
limits their applications in real surgical scenarios. NDP [22]
considers the low overlap of point sets, but it needs to be
further combined with Lepard [19] to achieve good non-
rigid registration of low-overlap point sets, making it not
a correspondence-free method.

Due to the limitations of the aforementioned methods,
we aim to design a correspondence-free method that can
accurately and robustly align the full preoperative and partial
intraoperative point sets.

III. METHODS

As illustrated in Fig. 2, we propose two architectures
of Bidirectional Non-Overlapping Filtering Network (Bi-
NOFNet), i.e., Bi-NOFNet (Feature) and Bi-NOFNet (Point),
according to the utilised strategy of filtering out non-
overlapping regions in the preoperative point set. First, the
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Fig. 2. Overview of the proposed approach. (a) and (b) illustrate the architectures of Bi-NOFNet (Feature) and Bi-NOFNet (Point), respectively. The
inputs of our architectures are the source point set S and the target point set T , and the outputs are D

pred
forward and D

pred
backward. "FE (w/o M)" and "FE (w/

M)" represent FE-Block (without Mask), FE-Block (with Mask) detailed in Sec. III-B respectively, while "OA" and "BR" denote overlap-aware (OA) and
bidirectional registration (BR) blocks detailed in Sec. III-C and Sec. III-E, respectively. In Bi-NOFNet (Feature), we conduct non-overlapping filtering
operations at feature-level under the supervised registration paradigm whose forward and backward registration loss terms are defined in Eq. (13) and Eq.
(14) respectively. In Bi-NOFNet (Point), we perform non-overlapping filtering operations at point-level under a weakly-supervised registration paradigm
whose forward and backward registration loss terms are given in Eq. (19) and Eq. (20) respectively.

features are extracted from input point sets by Feature Ex-
tractor (FE) Block (cf. Sec. III-B). Then the learned features
are fed into Overlap-Aware (OA) Block to segment the
overlapping regions (cf. Sec. III-C) and we propose two ways
of filtering out non-overlapping regions using the predicted
overlap mask (cf. Sec. III-D). Meanwhile, a Bidirectional
Registration (BR) Block that encompasses both forward and
backward registration processes is used to estimate the non-
rigid displacement vectors (cf. Sec. III-E). Finally, we discuss
the loss functions used to optimize each module in Sec. III-F.

A. Non-Rigid Point Set Registration

Given the source point set (e.g., intraoperative) S ∈
RNs×3 and the target point set (e.g., preoperative) T ∈
RNt×3, where Ns ∈ N+ and Nt ∈ N+ are the number of
points in the two spaces, the aim of the non-rigid point set
registration (NRPSR) is to predict the point-wise displace-
ment vectors DS ∈ RNs×3 from S to T .

B. Feature Extractor (FE) Block

In the proposed approach, as shown in Fig. 2 (a) and Fig.
2 (b), the FE-Block is utilised twice. First, it is used to
learn features FS ∈ RNs×1091 and FT ∈ RNt×1091 which
are subsequently used for predicting the overlap mask in
Sec. III-C. This FE-Block is named FE-Block without Mask
and abbreviated as FE (w/o M). Second, it is also used to
extract features Ffiltered

S ∈ RNs×1091 and Ffiltered
T ∈ RNt×1091

which are further used for predicting displacement vectors
after filtering out non-overlapping regions. This FE-Block
is named FE-Block (with Mask) and abbreviated as FE (w/
M). In this section, we mainly discuss how to learn initial
features FS and FT with FE (w/o M).

OMNet [12] uses PointNet [23] to learn global features
of both source and target point sets. However, we notice
that there are two main issues with this way: (1) The local
context information within each point set is not explicitly
considered. (2) It does not specifically learn the associative
relations between two point sets. To address these issues, we

propose a new feature extractor, as illustrated in the Fig. 3.
Similar to [7][8][12], we also employ PointNet [23] to learn
global features gS ∈ R1024, gT ∈ R1024, which are then
duplicated as GS ∈ RNs×1024, GT ∈ RNt×1024. The global
features GS , GT are further concatenate with local features
lS ∈ RNs×64, lT ∈ RNt×64 (cf. lS and lT in Fig. 3) to obtain
the fused features fS ∈ RNs×1088 and fT ∈ RNt×1088 as

fS = GS ⊕ lS , (1)

fT = GT ⊕ lT , (2)

where ⊕ denotes elementwise addition.
Unlike OMNet [12] that just uses the fused features for

predicting overlap mask and displacement vectors, we feed
the fused features fS , fT into a transformer-based module
[20] to learn more distinctive features. Then we concatenate
the output features CS ∈ RNs×1088, CT ∈ RNt×1088 of the
transformer with raw point sets S and T :

FS = CS ⊕ S, (3)

FT = CT ⊕ T . (4)

By appending points’ coordinate information to features, we
aim to better guide the feature learning process especially
during the initial training stage.

C. Overlap-Aware(OA) Block

After the FE (w/o M), we feed FT into the OA-Block,
which outputs the per-point overlap mask for preoperative
point set T (cf. Fig. 2). OA-Block processes the input
features FT with MLP (1024, 512, 256, 128, 64, 1) to create
a binary mask MT ∈ RNt×1. To ensure differentiability
for backpropagation, the network first outputs a soft mask
ρ ∈ RNt×1 and then compute MT (i), for i ∈ {1, . . . , Nt}
by applying a fixed threshold σ:

MT (i) =

{
1, if ρ(i) ≥ σ

0, otherwise
(5)
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Fig. 3. The overall architecture of Feature Extractor (FE) Block. The FE-Block with and without the use of the overlap mask are labeled as FE (w/ M)
and FE (w/o M) in Fig. 2, respectively. A detailed description of the FE-Block is found in Sec. III-B.

where σ is set to be 0.5 in practical implementation, Z(i)
represents taking the ith row of matrix Z. On the other hand,
we define the ground-truth overlap mask as Mgt ∈ RNt×1,
and Mgt(i), i ∈ [1, . . . , Nt] is:

Mgt(i) =

{
1 if T (i) is in the overlapping regions,
0 otherwise.

(6)

D. Non-Overlapping Filtering Strategy

We propose two methods for filtering out non-overlapping
regions of the preoperative point set using MT , correspond-
ing to the two architectures, i.e., Bi-NOFNet (Feature) and
Bi-NOFNet (Point) in Fig. 2 (a) and Fig. 2 (b), respectively.

1) Feature-Level Filtering: In Bi-NOFNet (Feature), we
consider that in the FE-Block, non-overlapping points mainly
affect global features gS and gT , and the context informa-
tion, so we design FE (w/ M). For the preoperative point set
T , we multiply the output of the layer before max-pooling
hT ∈ RNt×1024 by a predicted overlap mask MT (cf. Fig.
3), resulting the filtered global feature gfiltered

T ∈ R1024:

gfiltered
T = max{hT ⊗MT }, (7)

where max denotes the Max-Pooling Layer, ⊗ is the elemen-
twise multiplication operator. By assuming that all points in
S lie in the overlapping region with T , which is reasonable
for the image-to-patient registration, we simply multiply the
feature hS ∈ RNs×1024 by a all-ones vector 1Ns

∈ RNs×1

to get the global feature gfiltered
S ∈ R1024:

gfiltered
S = max{hS ⊗ 1Ns

}. (8)

Additionally, since the transformer calculates the interre-
lations between all points, it is also necessary to multiply the
fused feature fT and fS by the overlap mask MT and 1Ns

respectively:
ffiltered
T = fT ⊗MT , (9)

ffiltered
S = fS ⊗ 1Ns

, (10)

which are then inputted into a transformer module, whose
outputs are then concatenated with raw point sets S and T
to obtain filter features Ffiltered

S and Ffiltered
T (cf. Sec. III-B).

The filtered features Ffiltered
S and Ffiltered

T , as shown in Fig.
2 (a), will be leveraged by the BR-Block in Sec. III-E to
predict displacement vectors.

2) Point-Level Filtering: In Bi-NOFNet (Point), we con-
duct the non-overlapping filtering before the FE-Block. As
shown in Fig. 2 (b), we firstly input S and T into the lower
FE (w/o M) to obtain initial features FS , FT , which are
then inputted into the OA-Block in Sec. III-C to obtain a
mask MT for T . We then directly multiply MT with T ,
which removes points predicted by the OA-Block that are
not within the overlapping regions:

T filtered = T ⊗MT , (11)

where T filtered ∈ RNt×3 , MT is computed in Sec. III-C.
Subsequently, as shown in Fig. 2 (b), we further process

Tfiltered and S with the upper FE (w/o M) to obtain filtered
features Ffiltered

S and Ffiltered
T , which will be utilised by the

BR-Block in Sec. III-E to predict displacement vectors. Here,
the non-overlapping regions are directly filtered out at point-
level, which prevents non-overlapping regions from affecting
feature extraction steps.

E. Bidirectional Registration (BR) Block

The BR-Block consists of MLP (1024, 512, 256, 128,
64, 3), whose inputs are the filtered features Ffiltered

S and
Ffiltered

T computed in Sec. III-D, and outputs are predicted
displacement vectors in two directions, i.e., forward dis-
placement vectors Dpred

forward ∈ RNs×3 from S to T and
backward displacement vectors Dpred

backward ∈ RNt×3 from T
to S (cf. Fig. 2). The bidirectional registration mechanism
allows us to comprehensively learn information from both
point sets, thereby improving the accuracy of predicting non-
rigid displacement vectors.
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F. Loss Function
The training loss contains two terms, which are used to

optimise the predictions of the overlap mask and the non-
rigid displacement vectors, respectively.

1) Mask Prediction Loss: To balance the contributions
of points within and outside the overlapping regions, the
weighted cross-entropy loss is utilised for training the OA-
Block in Sec. III-C,

Lmask = −αMgt logMT − (1− α)(1−Mgt) log(1−MT ),
(12)

where (1− α) ∈ R is the overlap ratio of the inputs, Mgt ∈
RNt×1 and MT ∈ RNt×1 are the ground-truth and predicted
overlap masks for T respectively.

2) Bidirectional Registration Loss: During the bidirec-
tional registration process, we utilise different loss functions
corresponding to the two non-overlapping filtering strategies
in Sec. III-D.

a) L2 Distance Loss: In Bi-NOFNet (Feature), L2

distance loss is defined as the distance between predicted
and ground-truth non-rigid displacement vectors. The L2

Distance Loss LL2

forward in the forward registration process is:

LL2

forward =

∑Ns

i=1∥D
gt
forward(i)−Dpred

forward(i)∥
Ns

, (13)

where Dgt
forward ∈ RNs×3, Dpred

forward ∈ RNs×3 are the ground-
truth and predicted forward displacement vectors respec-
tively. The L2 Distance Loss LL2

backward with the backward
registration process is:

LL2

backward =

∑Ns

i=1∥D
gt
backward(i)−Dpred

backward(i)∥
Nt

, (14)

where Dgt
backward ∈ RNs×3, Dpred

backward ∈ RNt×3 are the
ground-truth and predicted backward displacement vectors
respectively. Since Dgt

backward only contains Ns points, all
of which are in the overlapping regions though Dpred

backward
contains Nt points, we only need to consider Ns points in
the overlapping region when computing Lbackward.

b) Chamfer Distance Loss: In Bi-NOFNet (Point), the
warped source and the target point sets, i.e., Sdeformed ∈
RNs×3 and Tdeformed ∈ RNt×3, are defined as,

Sdeformed = S +Dpred
forward, (15)

Tdeformed = T +Dpred
backward. (16)

Then we use the predicted overlap mask MT to filter out
the non-overlapping regions in T and T filtered:

T filtered = T ⊗MT , (17)

T filtered
deformed = Tdeformed ⊗MT . (18)

On one hand, the Chamfer distance loss LChamfer
forward with the

forward registration process is defined as:

LChamfer
forward =

1

Ns

∑
i∈N set

s

min
j∈N set

o

∥Sdeformed(i)− T filtered(j)∥2

+
1

No

∑
j∈N set

o

min
i∈N set

s

∥Sdeformed(i)− T filtered(j)∥2,

(19)

where the involved two sets are defined as N set
s = {1, ..., Ns}

and N set
o = {k ∈ {1, ..., Nt}|T (k) ̸= 0}, No is the cardinal-

ity of N set
o and can also be calculated as

∑Nt

k=1 1(MT (k)),
where 1 is the indicator function being one and zero when
the input is non-zero and zero respectively. The rationale is
that we only consider points in T predicted to be within the
overlapping region with S. On the other hand, the Chamfer
distance loss LChamfer

backward with the backward registration process
is defined as:

LChamfer
backward =

1

Ns

∑
i∈N set

s

min
j∈N set

o

∥S(i)− T filtered
deformed(j)∥2

+
1

No

∑
j∈N set

o

min
i∈N set

s

∥S(i)− T filtered
deformed(j)∥2,

(20)

where N set
s , N set

o and No are the same as those defined in the
forward registration loss, and the inherent rationale is also to
consider the predicted overlapping points in Tdeformed or T .

3) The Overall Loss: The overall training loss is defined
as the weighted sum of the mask prediction Loss in Sec.
III-F.1 and the bidirectional registration Loss in Sec. III-F.2:

Ltotal = α1 · Lmask + α2 · (L⋆
forward + L⋆

backward). (21)

where α1 ∈ R and α2 ∈ R are empirically set to be 0.4
and 0.6 respectively, L⋆

forward and L⋆
backward are LL2

forward in Eq.
(13) and LL2

backward in Eq. (14) for the supervised registration
paradigm, LChamfer

forward in Eq. (19) and LChamfer
backward in Eq. (20) for

weakly-supervised registration paradigm.

IV. EXPERIMENTS AND RESULTS

A. Dataset

There are many challenges in acquiring large scale of
medical point sets (e.g., the liver organ that we are interested
in this study), which includes privacy, ethics, etc. Very re-
cently, MedShapeNet [13], a large-scale medical dataset has
been proposed, which contains over 100,000 medical shapes,
including bones, organs, vessels, muscles, etc., as well as sur-
gical instruments. We propose DeformMedShapeNet, using
Npatient = 615 liver point sets in MedShapeNet as the full
preoperative model data in the image-to-patient registration
task. N train

patient = 551, N val
patient = 32 and N test

patient = 32
liver shapes are utilised as the training, validation and test
preoperative data respectively. Similar to those in [8][24],
we use Thin-Plate Spline (TPS) interpolation[25] to apply
controllable deformations over preoperative liver point sets
and generate intraoperative counterparts. The details of TPS
deformation can be found in [26]. We first normalize the
Npatient = 615 preoperative liver point sets and apply the
TPS technique to generate the intraoperative data while the
extent of deformation can be adjusted by TPS Deformation
Level (TDL).

1) Various Deformation Levels: In image-to-patient liver
regisration, the organ deformation can frequently reach sev-
eral centimeters in magnitude [27]. In open surgery, the
surface displacements occur with magnitudes from 0.5 to
2.0 cm and maximum closest point distance magitudes from
approximately 1.0 to 2.0 cm [28]. The deformation between
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TABLE I
QUANTITATIVE RESULTS UNDER DIFFERENT OVERLAP RATIOS AND NOISE LEVELS WITH THE DEFORMATION LEVEL BEING 0.2.

Noise Level Overlap Ratio 12.5% 25% 50%

Methods
Metrics RMSE(mm) MAE(mm) RR(%) RMSE(mm) MAE(mm) RR(%) RMSE(mm) MAE(mm) RR(%)

Low Noise

CPD [15] 85.72 79.80 0.0 71.31 65.39 0.0 47.17 41.99 0.0
FPT(unsupervised) [7] 111.62 101.29 0.0 106.98 92.96 0.0 71.49 49.07 0.0
FPT(supervised) [7] 13.85 13.24 24.1 13.74 13.06 21.9 12.71 11.92 30.0

FLOT [6] 88.25 82.51 3.1 9.85 8.56 89.1 8.58 7.57 89.4
NDP [22] 94.66 84.38 0.0 74.75 63.37 0.0 34.10 20.54 14.4

Bi-PointFlowNet [9] 15.56 14.36 22.8 13.15 11.50 41.3 10.37 8.49 64.1
MSBRN [10] 9.98 8.66 62.5 8.98 6.97 75.3 10.26 8.03 68.1

Bi-NOFNet(Point) 13.49 11.91 35.3 13.52 11.73 32.5 13.89 12.01 23.4
Bi-NOFNet(Feature) 8.97 8.07 76.9 8.13 6.87 87.2 7.61 6.40 93.4

Medium Noise

CPD [15] 85.80 79.89 0.0 71.40 65.46 0.0 47.20 42.02 0.0
FPT(unsupervised) [7] 112.19 101.87 0.0 107.42 93.37 0.0 71.80 49.34 0.0
FPT(supervised) [7] 13.97 13.35 23.8 13.90 13.20 19.7 12.87 12.06 29.1

FLOT [6] 91.94 86.41 1.6 12.89 11.34 84.1 10.88 9.61 87.8
NDP [22] 94.56 84.54 0.0 73.36 62.10 0.0 34.99 22.00 6.9

Bi-PointFlowNet [9] 15.46 14.57 22.8 13.08 11.63 36.9 11.18 9.59 57.2
MSBRN [10] 10.19 8.87 21.6 9.95 8.01 31.6 10.61 8.55 46.9

Bi-NOFNet(Point) 13.72 12.17 32.5 13.77 12.04 26.9 14.06 12.25 20.3
Bi-NOFNet(Feature) 9.30 8.41 76.3 8.47 7.27 85.6 7.94 6.79 91.9

High Noise

CPD [15] 85.85 79.97 0.0 71.43 65.52 0.0 47.25 42.11 0.0
FPT(unsupervised) [7] 113.01 102.71 0.0 108.08 94.01 0.0 72.26 49.78 0.0
FPT(supervised) [7] 14.24 13.57 20.9 14.19 13.45 16.3 13.18 12.35 22.2

FLOT [6] 94.65 89.13 0.3 26.92 23.99 49.1 32.77 29.03 27.5
NDP [22] 93.55 83.49 0.0 74.61 63.98 0.0 36.54 24.58 2.2

Bi-PointFlowNet [9] 15.40 14.86 21.6 13.23 11.84 31.6 11.12 11.24 46.9
MSBRN [10] 10.87 9.63 60.9 11.35 9.58 58.4 11.65 9.79 60.0

Bi-NOFNet(Point) 14.07 12.57 26.3 14.15 12.50 20.0 14.42 12.69 13.4
Bi-NOFNet(Feature) 9.85 8.91 70.9 9.10 7.96 82.8 8.55 7.47 89.1

the preoperative and laparoscopic(14mmHg) is 10.1±5.9
mm, between the preoperative and laparoscopic(7mmHg) is
9.0±7.0 mm [29]. To ensure the created data sets reflect
real surgical scenarios, during the training phase, TDL are
set to lie in the range [0.1, 0.2]. In the test phase, the data’
TDLs are 0.1, 0.15, and 0.2, respectively. It is noted that
TDL of 0.1, 0.15, and 0.2 approximately corresponds to
physical deformation magnitudes being 10mm, 12mm, and
15mm respectively, which resembles those real cases in open
and laparoscopic surgeries [27][28][29].

2) Various Overlap Ratios and Noise Levels: The fol-
lowing two steps were used to further process the full
intraoperative point set SFull ∈ RNf×3 where Nf = 1024 to
generate the partial counterparts S ∈ RNs×3. First, to mimic
different intraoperative visibility, we randomly cropped the
simulated intraoperative point set SFull with three different
overlap ratios, i.e., 12.5%, 25% and 50%, which represent
low, medium, and high levels of overlap ratios respectively.
In these three cases, Ns = 128, Ns = 256, and Ns = 512
respectively. Specifically, we randomly generated a direction
vector to represent a 3D infinite line with the centroid of
SFull as the origin, after which the shortest distances from
each point in SFull to this line are calculated and the closest
points are sampled. Second, random noise was applied on
both the cropped intraoperative point set S and preoperative
point set T with low, medium and high noise whose mean
magnitudes are 0.63mm, 1.90mm, 3.16mm respectively.

3) DeformMedShapeNet: We have conducted 10 simu-
lated deformations for each preoperative liver model, so in
each case of overlap ratio (i.e., 12.5%, 25%, 50%) and noise
(i.e., medium), we totally have N train

total = 5510 intraoperative

point sets for training, N val
total = 320 intraoperative point

sets for validation, and we test our model under 9 different
experimental settings (i.e., three different TDLs and noise
levels according to Sec. IV-A.1 and Sec. IV-A.2), with
N test

total = 320 deformations for the test in each experimental
setting.

B. Implementation Details

Bi-NOFNet was implemented using Pytorch on a single
GPU (i.e., Nvidia GeForce RTX 4090, 24GB). During train-
ing, we used the Adam as the optimizer, the initial learning
rate was set to 0.001 and the learning rate decreased by half
every 100 epochs. The batch size was 16 and the network
was trained with a total of 300 epochs.

C. Evaluation Metrics

For evaluation, we use root mean squared error (RMSE)
and mean absolute error (MAE). RMSE(m) and MAE(m)

are calculated for the mth liver in the test set, where

RMSE(m) =

√∑Ns
i=1∥D

gt
forward(i)−Dpred

forward(i)∥2

Ns
and MAE(m) =∑Ns

i=1∥D
gt
forward(i)−Dpred

forward(i)∥
Ns

, respectively. Though we use a
bidirectional registration loss function during training, we
only need to compute the forward registration error from the
intraoperative point set S to the preoperative point set T in
the test stage. The recorded RMSE and MAE in Table I are
the average values computed over liver pairs in the test set.
Additionally, we also compute the Registration Recall (RR)

defined as RR =
∑N test

total
i=1 1(MAE(m)<τ)

N test
total

, where τ ∈ R is the
threshold and set to be 10 mm.
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Bi-NOFNet(Point)FPT(unsup.) FPT(sup.) FLOT Bi-PointFlowNet MRBSNInput NDP

(a)

(b)

(c)

Bi-NOFNet(Feature)CPD

Fig. 4. Qualitative results under three overlap ratios of 12.5%, 25%, and 50% are presented in the upper (a), middle (b), and lower (c) rows respectively.
The full preoperative and partial intraoperative point sets, i.e., T and S, are denoted with yellow and blue dots respectively. The first column represents the
case before registration while other columns denote the two point sets after registration. Bi-NOFNet (Point) and Bi-NOF (Feature) are the two proposed
approaches.

(a) Bi-NOF(Feature) (b) Bi-NOF(Point)

Fig. 5. Quantitative results (i.e., MAE) by Bi-NOFNet (Feature) and Bi-
NOFNet (Point) under varying deformation levels and overlap ratios with
medium noise conditions.

D. Results

We benchmark Bi-NOFNet with related non-rigid point
set registration methods, including CPD [15], FPT [7], Flot
[6], NDP [22], Bi-PointFlowNet [9] and MSBRN [10].

1) Various Noise and Overlap Ratios: Table I shows
quantitative results under three different noise levels and
overlap ratios, where TDL is fixed as 0.2. Fig. 4 shows cor-
responding qualitative results. Experimental results demon-
strate that Bi-NOFNet(Feature) outperforms other methods
under various experimental settings. For example, in the
case of "Overlap Ratio:12.5%, TDL:0.2, Noise Level:Low",
Bi-NOFNet (Feature) achieves RMSE, MAE and RR of
8.97mm, 8.07mm and 76.9%, respectively, outperforming
other methods. Despite utilising a weakly-supervised regis-
tration paradigm, Bi-NOFNet(Point) outperforms some su-
pervised learning methods(e.g., FPT(supervised)[7], Flot[6],
NDP[22], Bi-PointFlowNet[9]).

2) Various Deformation Levels and Overlap Ratios:
To investigate the influence of overlap ratios and defor-
mation levels over registration performances, we validated
Bi-NOFNet and its variant under three overlap ratios (i.e.,
12.5%, 25%, 50%) and three TDLs (i.e., 0.1, 0.15, 0.2).
Fig. 5 shows the corresponding results, from which we
have two observations. First, for both Bi-NOFNet (Feature)

TABLE II
QUANTITATIVE RESULTS OF ABLATION STUDIES WITH OVERLAP RATIO

BEING 25%, MEDIUM NOISE AND TDL BEING 0.2.

Methods RMSE(mm) MAE(mm) RR(%)

FPT(unsupervised) 107.42±10.72 93.37 ±10.20 0.0
FPT(unsupervised) + NOF(Point) 16.27±4.15 15.30±4.05 6.6

Bi-NOFNet(Point) 13.77± 3.21 12.04± 3.11 26.9

FPT(supervised) 13.90±3.60 13.20±3.58 19.7
FPT(supervised) + NOF(Feature) 11.60±3.11 10.88±3.00 41.9

Bi-NOFNet(Feature) 8.47± 2.97 7.27± 2.74 85.6

and Bi-NOFNet (Point), registration error values increase
with larger deformations. Second, for Bi-NOFNet (Feature),
smaller overlap ratios lead to an evident increase in both
RMSE and MAE, while Bi-NOFNet (Point)’s performance
is less affected by varying overlap ratios. We suspect that the
lower the overlap between preoperative and intraoperative
point sets is, the more difficult it is to effectively filter out
non-overlapping regions in the feature space. In contrast, in
Bi-NOFNet(Point), the capability of directly filtering non-
overlapping regions at point-level does not heavily depend
on the overlap ratio.

3) Ablation Study: We investigate the contributions of two
non-overlapping filtering strategies, i.e., NOF (Feature) and
NOF (Point) in Sec. III-D, and the bidirectional registration
mechanism in Sec. III-E under the experimental setting being
"Overlap Ratio: 25%, Medium Noise, TDL: 0.2". Table
II shows the corresponding results. We compare with two
baselines: FPT (unsupervised) [7] and FPT (supervised) [7].

Using FPT (unsupervised) [7], the RMSE, MAE and
RR are 107.42±10.72 mm(mean±std), 93.37±10.20 mm
and 0.0%, respectively, which indicates that FPT (unsuper-
vised) is fails to handle the partial-full liver registration.
FPT(supervised)[7] achieves RMSE of 13.90±3.60 mm,
MAE of 13.20±3.58 mm and RR of 19.7%, which is better
than FPT (unsupervised) but the error is still relatively
large. FPT(unsupervised)[7] combined with NOF(Point)
achieves RMSE of 16.27±4.15 mm, MAE of 15.30±4.05
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mm and RR of 6.6%. FPT(supervised)[7] combined with
NOF(Feature) can achieve RMSE of 11.60±3.11 mm, MAE
of 10.88±3.00 mm and RR of 41.9%. These significant
improvements demonstrate the effectiveness of the pro-
posed non-overlapping filtering strategies for both registra-
tion paradigms, particularly for FPT(unsupervised)[7]. Fur-
thermore, registration errors further decrease with the bidi-
rectional mechanism, especially with a significant improve-
ment in RR(cf. Bi-NOFNet(Point) and Bi-NOFNet(Feature)
in Table II). The significance of the proposed bidirectional
registration mechanism is thus validated.

V. CONCLUSIONS

In this paper, we have introduced Bi-NOFNet, a learning-
based bidirectional partial-to-full non-rigid point set reg-
istration, for image-guided liver surgery (IGLS). We have
first proposed a DeformMedShapeNet data set to validate
image-to-patient registration algorithms for IGLS. Two non-
overlapping region filtering strategies have then been for-
mulated, and the bidirectional registration mechanism is
formally defined in the partial-to-fll non-rigid registration.
Additionally, extensive experimental results demonstrate the
superiority of the Bi-NOFNet over exsiting approaches, and
the ablation studies further validate the significance of the
proposed modules. Furture work will explore the use of
biomechanical simulation approach to generate more data
in DeformMeshapeNet, and will consider the biomechanical
constraints in the registration approach.
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